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Introduction 
The 2019-2021 Cooperative Monitoring, Evaluation, and Research (CMER) work plan1 defines 

the Wetland Mapping Program strategy: 

“This program is intended to address gaps in existing data on the location, 

distribution, size, and geophysical characteristics of wetlands, especially for 

forested wetlands. More accurate spatial data could enhance the design and 

implementation of projects examining the effects of forest practices rules on 

wetland functions. Specifically, the data could provide context for (1) focusing 

research on wetlands and associated typed-waters that may be vulnerable to 

harvest and road impacts, and (2) assessing the spatial applicability (inference) of 

study findings to other landscapes. The use of remote sensing and associated 

geospatial modeling with GIS is a potentially viable tool to fill these data needs; 

however, no suitable GIS model is currently available for grouping wetlands by 

functional type or landscape position.” 

The Wetland Mapping Tool project seeks to provide an ArcGIS-based tool for using remotely 

sensed and other GIS data resources to map the estimated probability of wetland occurrence. 

The project is divided into two phases.  

Background 
Phase 1, completed in April 20182, involved development of a wetland intrinsic potential (WIP) 

tool. The WIP tool uses topographic, climatic, and geologic data to characterize five 

hydrogeomorphic indicators (Brinson, 1993): 1) depth to water table near streams and rivers, 2) 

depth to water table near lakes and ponds, 3) relative depth of closed depressions, 4) depth to 

an impermeable layer, and 5) a climate-topographic wetness index. Each indicator represents 

certain physical controls on processes of water flux through the landscape that create 

conditions for wetland formation.  

Phase 1 focused on developing individual suitability curves for each of the hydrogeomorphic 

indicators using the range of values identified on the landscape. Each suitability curve is scaled 

from zero to one, with zero indicating no potential for wetland formation and one indicating a 

high potential. For each location on the ground, the suitability-curve values are combined to 

provide a postulated probability of wetland presence. The tool thus enables the translation of 

postulated controls on water flux to quantitative predictions of wetland occurrence that can be 

compared to field observations. The WIP tool developed during phase 1 provides a means of 

translating hypotheses about wetland formation into maps showing predictions of likely 

wetland occurrence. The WIP tool from phase 1 can be used without training data, but proved 

 
1 https://www.dnr.wa.gov/publications/fp_cmer_2019_2021_workplan_20190119.pdf?c4wk29 
2 Final report available at https://terrainworks.sharefile.com/d-s961f11c3eca47e58 

https://www.dnr.wa.gov/publications/fp_cmer_2019_2021_workplan_20190119.pdf?c4wk29
https://terrainworks.sharefile.com/d-s961f11c3eca47e58


Wetland Mapping Tool Project, Phase 2  February 15, 2020 

2 
 

to be difficult to put into practice and even with tuning still missed several forested wetland 

areas.  

While Phase 2 builds off the hydrogeomorphic principles outlined in Phase 1, the methods and 

selected data inputs to the model are different. Phase 2, described in this report, uses machine 

learning trained on locations of wetland presence and absence to create a wetland probability 

map. For Phase 2, we built off insights gained from research led by the Washington State 

Department of Ecology (WA DOE) and developed under the EPA Grant Number CD01J09401, 

Improved Wetland Identification for Conservation and Regulatory Priorities (Halabisky, 2019), 

which was completed after Phase 1 results. The WA DOE-led project tested multiple data input 

layers, including those used in Phase 1, to map wetlands across an entire watershed. The WA 

DOE-led project provided quantitative information in regards to which datasets had highest 

model significance at predicting wetlands overall. However, the WA DOE-led project could not 

quantitatively assess model effectiveness specifically for forested wetlands because of a lack of 

reference data, which was the objective of the Phase 2 WIP tool. We visually explored all of the 

data inputs by overlaying them with known forested wetlands to qualitatively determine their 

effectiveness at detecting forested wetland areas.  

In Phase 2 we selected only the variables that had model significance or qualitatively showed 

promise at picking up forested wetlands in the WA DOE-led effort. Multiple topographic indices 

calculated over a range of length scales were identified as strongly predicting wetland presence 

or absence, especially for forested wetlands, and are described below in the Phase 2 methods. 

The only variable from Phase 1 that was included in Phase 2 was the topographic wetness 

index. One additional variable from Phase 1, depth to water table near streams and rivers, was 

shown to have some significance in model improvement for the WA Dept. of Ecology led 

project, but was not included in the model testing and results. This depth-to-water metric was 

of lower importance and was not prioritized for inclusion because it required significant time 

investment to build into the WIP tool software. The depth-to-water metric could be added in 

the future or calculated separately and brought into the random forest model. 

In addition to changing some of the input datasets for Phase 2, we explored the use of 

statistical models using machine-learning approaches (Halabisky, 2019). Random forest 

modelling, a machine-learning technique, provided the best performance and greatest 

flexibility for application across a diverse range of landscapes. The creation of input datasets 

and the random forest approach have been incorporated into the Phase 2 WIP tool ArcGIS Pro 

toolsets, and allow users to sequentially: 

1. Calculate topographic attributes at multiple scales,  

2. Calibrate a random forest model using point locations classified in terms of wetland 

presence or absence,  

3. Develop a model of probability of wetland occurrence that can be applied and tested in 

other areas.  
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The ArcGIS toolboxes allow use of a wider variety of data sources than were available with the 

Phase-1 WIP tool for predicting wetland presence and provide means for evaluating the 

resulting models.  

Random forest 
Wetlands can be identified using indicators of vegetation, hydrology, topography, and soils.   

Remotely sensed multispectral imagery is used to identify wetland vegetation (e.g., Adam et al., 

2009; Mahdavi et al., 2017) and presence of surface water. Lidar-derived elevation data is used 

to identify topographic features where wetlands form (e.g., Fink and Drohan, 2016; Lang et al., 

2013; O'Neil et al., 2018). Lidar intensity can delineate surface water and wet soils (Lang and 

McCarty, 2009). Inclusion of soil characteristics can improve GIS-based wetland mapping 

(Buchanan et al., 2014; Knight et al., 2013). Even the abundance of down wood might influence 

the flow of surface water into wetlands or riparian areas (Janisch et al., 2011). Given the 

abundance of potential predictors, we require techniques capable of using and evaluating many 

variables for predicting wetland location. 

Analysis of large and diverse datasets has benefited from the relatively recent development of 

machine-learning algorithms (e.g., Hastie et al., 2017; Maxwell et al., 2018). Specifically, there 

has been a shift to the use of powerful new machine learning algorithms that do not require 

assumptions about the statistical distribution of input data.  Non-parametric supervised 

classification approaches to land cover mapping produce more efficient and accurate results 

than earlier supervised parametric classification methods (e.g. maximum likelihood) primarily 

because satellite image data values are not normally distributed (Wulder et al. 2019). Random 

forest modelling is the most commonly used non-parametric classification method (Breiman, 

2001), which allows for the use of multiple, correlated input variables that are not normally 

distributed.  

Random forest is an extension of the Classification and Regression Tree (CART, Breiman et al., 

1984) approach for identifying correlations among many and potentially diverse attributes. For 

analysis of classified data (e.g., is a location a wetland or not), a decision tree is used in which 

the explanatory variables are divided into separate domains, so that each domain contains 

dependent variables (the training data) primarily of one class. The predicted class for a new 

location depends on which domain it falls into. CART is very effective at identifying subtle 

relationships, but suffers from high variance; that is, the result can be extremely sensitive to 

differences in the input data. The random forest algorithm addresses this weakness by using 

many analyses – that is, growing a large number of decision trees – for a single data set, with 

each analysis (tree) using only a randomly selected portion of the data. Each analysis predicts a 

class for each data point sampled from the training data set. Depending on the degree to which 

the training data classes can be isolated into separate domains within the range of explanatory 

variables (the degree to which the explanatory variables can discern controls on wetland 

formation), that prediction may be correct or incorrect. The result for each point is based on 

the majority result over all the analyses – over all the trees. Random forest has proven to be a 
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robust and effective method for discerning relationships between the types and variety of 

variables listed above and observed wetland locations (e.g., Chignell et al., 2018; Halabisky, 

2019; Mahdavi et al., 2017; Maxwell et al., 2016; Tyralis et al., 2019).  

Topographic indices 
Wetlands form in locations where soil water accumulates and persists, so physical controls on 

soil water fluxes influence wetland formation. Topography imposes a primary control on soil-

water fluxes and many studies have shown that topographic attributes derived from digital 

elevation data, particularly high-resolution data from lidar, are effective at identifying wetland 

locations (e.g., Lang et al., 2013; O'Neil et al., 2018). High-resolution lidar DEMs can thus 

provide data for identifying wetlands in locations where multispectral imagery may be 

ineffective or unavailable. Additional data types can be combined with topographic data to 

increase the accuracy of wetland predictions (Kloiber et al., 2015). 

However, in order to identify wetlands using topographic metrics we first need to identify those 

topographic attributes most relevant to wetland formation and then translate the grid of 

elevation values provided by a lidar DEM to quantitative measures of those attributes. There 

are many ways to characterize topography. Wilson (2018) lists 17 different measures of 

curvature; Jasiewicz and Stepinski (2013) identify 498 distinct topographic forms that can be 

uniquely identified from a DEM. We must also identify the appropriate length scales at which to 

measure  topographic attributes. Wetlands are often found in low-lying terrain, but is a 30-

meter-wide depression as important as a 300-meter-wide depression, or a 3000-meter-wide 

depression? Likewise, does a depression on a valley floor have the same importance as a 

depression on a ridge top?  

Studies to date have examined relatively few topographic attributes (although Maxwell et al., 

2016, examined 21 terrain attributes in their analysis). Most research has focused primarily on 

topographic indices of soil wetness (e.g., Lang et al., 2013) and mapping of closed depressions 

(e.g., Wu and Lane, 2016). There have been several researchers who have modelled 

groundwater using an approximate measure of height above nearby channels referred to as 

depth-to-water (e.g., Murphy et al., 2007; White et al., 2012).  

We tested the effectiveness of topographic measures of gradient, curvature, and local relief 

calculated at different length scales. Topographic metrics are calculated directly from a DEM, 

whereas calculation of the topographic wetness index and depth-to-water first require that the 

channel network be delineated, which entails multiple steps (e.g., Miller et al., 2015).   For 

example, to calculate the topographic wetness index (TWI) one must use a DEM to calculate 

slope, flow direction, and flow accumulation using hydrological flow modelling tools, which are 

then built into an equation that calculates the TWI.   

Gradient (or slope) indicates the change in elevation with distance: rise over run, or S = dz/dx, 

where S is the gradient and dz indicates the change in elevation over a horizontal distance dx. 

Gradient at a point can be calculated for any direction. We use the direction in which gradient is 
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largest; that is, along the fall line aligned with the hillslope aspect. Curvature gives the change 

in gradient with distance dS/dx (Figure 1).  

Curvature parallel to the fall line, in the direction of 

steepest gradient, is referred to as profile curvature 

(Figure 1). Where gradient is decreasing as one moves 

downslope, (i.e., where profile curvature is positive), the 

velocity of shallow groundwater flow downslope 

decreases, forcing ground water toward the surface. Thus, 

large positive values of profile curvature may indicate 

likely zones of wet soils. Curvature in a direction 

perpendicular to the fall line, along a contour, is referred 

to as plan curvature (Figure 1). Plan curvature provides a 

measure of topographic convergence (positive values) 

and divergence (negative). Convergent topography acts to 

concentrate surface and subsurface water flow, so large 

positive values of plan curvature may also indicate likely zones of wet soils3. A DEM provides 

elevation values over a regular grid of points. Elevations between points must be interpolated. 

A variety of interpolation schemes have been devised, and the choice of algorithm used 

influences the resulting values (Florinsky, 1998). We represent the topography around a DEM 

grid point using a polynomial surface fit to the point and to 8 adjacent points (Zevenbergen and 

Thorne, 1987). The 8 adjacent points are placed on a circle of specified diameter about the 

central point (Shi et al., 2007). If an adjacent point on the circle does not fall exactly on a DEM 

grid point, we use bilinear interpolation to the nearest four grid points to estimate its elevation. 

This procedure allows us to calculate gradient and curvature for each DEM point measured over 

any length scale (down to the DEM grid size).  

We use local relief to indicate whether a point is in low- or high-lying terrain. As a measure of 

local relief, we use deviation from mean elevation (Wilson, 2018): 𝐷𝐸𝑉 =  (𝑧 − 𝑧�̅�𝑥) 𝑠𝑑𝑑𝑥⁄ , 

where z is elevation at the point of measurement, 𝑧�̅�𝑥 is mean elevation over a circle of 

diameter dx, and sddx is the standard deviation of elevation within that circle. Positive values of 

DEV indicate the point is higher than the mean of neighboring points (within the circle of 

diameter dx); negative values indicate the point is lower. Dividing by the standard deviation – a 

measure of how variable elevations are within the circle – acts to normalize DEV values so that 

depressions in gentle, low-relief terrain, like broad river valleys or the Puget lowlands, are 

recognized just as well as depressions in high-relief terrain, like alpine glacial cirques.  

Unless the topography is totally flat, values of gradient, curvature, and local relief can vary 

depending on the distance (dx) over which they are measured. Over a few meters, say, features 

like tree-throw pits and gullies will affect topographic indices. Over tens of meters, these 

measures discern features like small bedrock hollows or hummocks in glacial and landslide 

 
3 https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm 

Figure 1. Examples of profile and plan 

curvature 
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deposits. Over hundreds of meters we see effects of drumlins and ice-sheet outwash channels4. 

Over thousands of meters we see broad regional depressions. Landforms at multiple scales, 

spanning tens to thousands of meters, influence the flow paths of water through the landscape. 

To identify wetlands using topographic indicators the full range of length scales must be 

explored. 

Methods 

Study sites 
Data collection and model evaluations were performed at four study areas in western 

Washington (Figure 2). Study areas include both low-relief terrain dominated by Holocene 

glacial and alluvial (river) deposits and higher-relief alpine terrain. The Puyallup study area 

spans both (Figure 3). The western portion consists primarily of continental ice-sheet deposits 

and landforms; the eastern portion extends into the foothills of Mount Rainier and includes 

steep U-shaped alpine glacial valleys. The adjacent Mashel basin lies primarily in higher-relief 

terrain, with few ice-sheet deposits but abundant alpine glacial landforms and deposits (Figure 

3). Alpine zones in both the Puyallup and Mashel are underlain predominately by igneous and 

volcanic rock types. The Coulter Creek area consists almost entirely of continental ice-sheet 

deposits and landforms (Figure 4). The Hoh study area includes a broad valley filled with alluvial 

 
4 See https://www.dnr.wa.gov/publications/ger_presentations_coe_glacial_landforms_puget_lowland.pdf 

Figure 2. Study sites. 

Hoh

Puyallup

Mashel

Coulter
Creek

https://www.dnr.wa.gov/publications/ger_presentations_coe_glacial_landforms_puget_lowland.pdf
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and alpine glacial deposits, with steep alpine zones predominately in marine sedimentary rocks 

(Figure 5).  

Precipitation in the lower elevations is predominately rainfall; all sites but Coulter Creek have 

snow at higher elevations. The Puyallup and Mashel have a similar range of mean annual 

rainfall, Coulter Creek is slightly dryer, and the Hoh is considerably wetter (Table 1, Figure 6). 

Table 1 

Area 
(km2) 

Elevation (m) 
Mean Annual Precipitation 
(mm) 

Min Max Mean Min Max Mean 

Puyallup 1967 0 2127 660 972 2896 1554 

Mashel 231 452 4881 2211 912 2170 1677 

Coulter 
Creek 

384 0 1763 381 1280 1865 1423 

Hoh 358 94 4085 1086 2762 4305 3335 

 

Figure 3. The Puyallup and Mashel study areas. 

 

Puyallup

Mashel
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Figure 4. Coulter Creek study area. 

 

 
Figure 5. Hoh study area. 
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Data analysis 
A primary goal of this project is to develop an ArcGIS Pro toolset for mapping wetland potential, 

therefore we have worked with data that are publicly available and analysis tools that are 

available directly within ArcGIS or can be implemented as scripts within ArcGIS toolboxes.  

Topographic indices were calculated using compiled Fortan programs from the Netstream 

program suite (Miller, 2003). These programs implement the procedures described above for 

calculating gradient, curvature, and local relief over any length scale. The Surface Metrics 

python5 script written for this project provides an ArcGIS Pro toolbox for using these programs 

to build the associated raster files. We calculated gradient, curvature, and local relief values 

over three length scales that we felt captured the range of variability across the landscape: 50 

m, 150 m, and 300 mThe raster files were then used as input data for building the random 

forest models. 

 

 
5 https://www.python.org/ 

 

Figure 6. Mean annual precipitation across western Washington and the four study sites. Data from 
PRISM http://www.prism.oregonstate.edu/ 

 

Puyallup

Mashel

Coulter
Creek

Hoh

https://www.python.org/
http://www.prism.oregonstate.edu/
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The random forest model (Breiman, 2001) is implemented in the randomForest package6 in the 

R statistical language7. We used the R-ArcGIS Bridge8 to build the Wetland Tools ArcGIS Pro 

toolbox that implement scripts that call R functions to build and apply random forest models.  

Data for training (calibrating) and evaluating the models consists of point locations classified as 
wetland or upland (see Data collection section below). The resulting classifications are verified 
through aerial photo interpretation and field surveys. The data collected for this project are 
stored as a point feature class within ArcGIS and are available for building and evaluating 
random forest models through the toolboxes developed for this project. The gradient, 
curvature, and local relief values for each length scale are determined for each point in the data 
set by overlaying the points on the rasters. Bilinear interpolation to the four nearest raster grid 
points is used to determine the value when the data points do not fall directly on a raster grid 
point (i.e., raster cell corner). Each data point then has a classification, wetland or upland, and a 
list of terrain attributes (gradient, plan curvature, profile curvature, and local relief at 50-, 150-, 
and 300-m length scales). This table of values is then used to build the random forest model. 

The R random forest package provides two useful measures of model performance. One is the 

“out-of-bag”9 error rate. The random forest consists of many individual decision trees created 

using a boot-strap sample (random sample with replacement) of the data points. This 

procedure is called “bagging”; the sampled points for any tree are “in the bag”, the excluded 

points are “out of the bag”. The prediction obtained from the average of the entire ensemble of 

trees in the forest is less sensitive to noise in the input data than any individual tree. 

Additionally, each tree can be used to predict the class of the out-of-bag points that were not 

used from the data set to build that tree. The majority class of all out-of-bag predictions for that 

point is compared to the observed class for that point. Repeated for all data points, this 

provides an estimate of model error in terms of the proportion of out-of-bag sample classes 

(wetland or upland) correctly predicted. The second indicator of model performance is a 

confusion matrix10, which shows how many data points were correctly classified, how many 

wetland points were classified as upland, and how many upland points were classified as 

wetland.  

For any location, the resulting random forest model can then use the terrain-attribute values at 

that location to calculate a probability that the location is wetland or upland. The model can 

thus build a new raster showing the predicted probability that a wetland will be found at each 

DEM grid point. Likewise, the model can predict probability of wetland occurrence for a new set 

of data points. The predicted probability can then be compared to the observed class (wetland 

or upland) to provide a test of model predictions. A random forest model can thus be built 

using classified point data and interpolated to predict wetland occurrence within the same 

 
6 https://cran.r-project.org/web/packages/randomForest/randomForest.pdf 
7 https://www.r-project.org/ 
8 https://r-arcgis.github.io/ 
9 https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf 
10 https://en.wikipedia.org/wiki/Confusion_matrix 

https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://www.r-project.org/
https://r-arcgis.github.io/
https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf
https://en.wikipedia.org/wiki/Confusion_matrix
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basin, or extrapolated to predict wetland occurrence in another basin, and new data points can 

be collected to evaluate model performance.  

Data collection  

Phase 1 GRTS sampling  

We initially trained and validated our model for the Puyallup and Mashel study areas using data 

developed under the EPA Grant Number CD01J09401, Improved Wetland Identification for 

Conservation and Regulatory Priorities (Halabisky, 2019). This dataset was created using a 

modified multi-layer stratified-random sampling design based on Generalized Random 

Tessellation Stratified (GRTS) sampling protocol (Stevens and Olsen, 2004) implemented in 

spsurvey11 in the software program R12. Points were stratified first using slope and accessibility 

and then second on landcover class. We determined low slope and high slope areas using a 

threshold calculated from the 99th percentile of mean slope for all wetland polygons in the 

current National Wetlands Inventory13 (NWI) for the Puyallup and Mashel study areas. We 

defined accessible regions as all public lands and areas between 15 and 60 meters of all public 

roads to allow for roadside surveys.  

This provided four strata:  

• High slope - Inaccessible 

• High slope – Accessible 

• Low slope – Accessible 

• Low slope – Inaccessible 

We used the secondary stratification only for low-slope areas (accessible & inaccessible) based 

on the following 6 land cover classes: developed, agriculture, grass/bare, forests/shrub & 

wetland. This secondary stratification was derived from the NOAA C-CAP14 landcover dataset. 

We sampled each of the four strata in the following proportions: High slope-Inaccessible - 1/6 

of total sample points, High slope-Accessible -1/6 of total sample points, Low slope-Inaccessible 

- 1/3 of total sample points, Low slope-Accessible - 1/3 of total sample points. We used these 

proportions to ensure enough sample points fell in wetland areas, which are generally in low 

slope areas, while still sampling in areas with a lower likelihood of having wetlands to ensure 

good coverage. 

Phase 2 stratified random sample 

We derived the sample points for the Coulter Creek and Hoh study area by first running the 

random forest model trained on the Puyallup study area. We used the Puyallup trained model 

to stratify our sample points, because it provided an efficient way to identify potential wetland 

areas as well as areas where there is high model uncertainty (i.e., probability near 0.5). This 

 
11 https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf 
12 https://www.r-project.org/ 
13 https://www.fws.gov/wetlands/ 
14 https://coast.noaa.gov/digitalcoast/tools/lca.html 

https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf
https://www.r-project.org/
https://www.fws.gov/wetlands/
https://coast.noaa.gov/digitalcoast/tools/lca.html
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provided a raster of wetland probability from 0 to 1. We stratified 400 sample points equally 

into four strata based on the preliminary wetland probability raster: 0 – 0.25, 0.25 – 0.5, 0.5 – 

0.75, 0.75 – 1.0. By sampling in areas of high model uncertainty we felt we could improve final 

model results with fewer areas falling in the middle two strata. 

Data sets 

The data sets created for each of the study areas were evaluated using the same two-stage 

approach. Each sample point was first assessed using aerial imagery and other available 

datasets including: Google street view imagery, Google Earth historic imagery, lidar data from 

the Washington State Department of Natural Resources lidar viewer, and pre-existing wetland 

inventories (i.e., NWI, the Pierce County wetland inventory15, and the NOAA C-CAP data). If a 

point could not be determined as a wetland or an upland in aerial imagery or any other 

available datasets, it was marked as unknown. A secondary assessment in the field (i.e., on the 

ground) focused on a proportion of those points. We added ancillary data points for wetlands 

observed in aerial imagery verification that were not identified in the NWI and those that we 

came across while assessing points in the field. We also added ancillary data points for non-

wetlands that were mapped in NWI as wetlands. All ancillary data points were collected 

opportunistically and only used as training data. We were unable to identify any slope wetlands 

to include in the training or validation dataset. Therefore, the model could not predict or 

validate the presence of slope wetlands.  

We assessed 1,239 GRTS points and added 132 ancillary points for the Puyallup watershed 

(Table 2). Of the 1,239 GRTS points, 42 points were followed up and assessed by visiting them in 

the field. Of the 132 ancillary points, 59 were validated in the field.  

 
15 https://gisdata-piercecowa.opendata.arcgis.com/datasets/cwi-wetlands-delineation 

Table 2. Number of GRTS sample points for the Puyallup watershed assessed in the office and field, number of 

ancillary points added to the dataset (top table); GRTS and ancillary points used for training and GRTS points 

used for validation (bottom table). 

 

https://gisdata-piercecowa.opendata.arcgis.com/datasets/cwi-wetlands-delineation
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Before using sample data points for our 

analysis, we removed any point that 

could not be determined as being in a 

wetland or upland. We also removed 

points if we felt they were 

overrepresented in the dataset. In the 

Puyallup watershed, for example, 103 

points were located in Lake Tapps and 

classified as wetland, creating a 

disproportionate number of points 

representing a lacustrine wetland. Of 

the assessed GRTS points, we reserved 

193 upland points and 75 wetland 

points for validation. We derived the 

Puyallup training dataset from the 

remaining GRTS sample points and 

supplemented with 132 ancillary 

points. The training dataset had 484 

upland points and 280 wetland points.  

 

We did not divide the sample data points into training and validation for the Mashel, Coulter 

Creek, and Hoh study areas (Table 3). Rather, because of the relatively small number of points, 

we used all the data collected for each of the study areas as input data to train the model. We 

also included all ancillary data collected opportunistically in the field. Evaluation of models is 

based on the “out-of-bag” error. Because of the limitation of the validation datasets, we only 

used the results to provide a coarse comparative metric to results from models trained using 

the NWI or the Puyallup model.  

Table 3. Number of sample points used for training and 

validation for the Hoh Coulter Creek, and Mashel study 

areas assessed in the office and field. Field points include 

ancillary points collected opportunistically as part of the 

field effort.   
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Results 

Model performance 
The random forest model for the Puyallup watershed had an overall accuracy of 96.6% (Figure 
7). The wetland error of commission (false positives) was 4.3% and the error of omission 
(missed wetlands) was 8.0%. In contrast, the current NWI for the Puyallup watershed had an 
overall accuracy of 88.1% and an error of commission of 2.1% and an error of omission of 
41.8%. The random forest model for the Puyallup mapped four times the area of wetlands 
within forest lands than the NWI. The random forest model trained on the Puyallup identified 
slope, dev150, dev300 as the three variables that contributed the most importance to the 
model as measured by the Gini importance or the mean decrease in impurity (MDI) (Figure 8). 
MDI is a commonly used metric that can be derived from a random forest model. MDI counts 
the times a feature (e.g., slope) is used to split a node in a decision tree, weighted by the 
number of samples it splits. 

 

Figure 7. Results from the WIP tool random forest model. The raster output produces a 

probability that a pixel is a wetland from 0-1. Pixel values close to 1 (Blue pixels) have a 

high probability of being a wetland, while pixel values close to 0 (brown pixels) have a 

low probability. 
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When the Puyallup model was extrapolated to the other study areas it provided potential 

locations of wetlands across each study area. The overall accuracy of the random forest model 

trained using the Puyallup data when run on the Mashel watershed had an overall accuracy of 

96% and an error of omission of 21% (Figure 9). When the random forest model was run using 

training data specific to the Mashel the overall accuracy only had a slight improvement (97% 

overall accuracy, 16% error of omission). However, both models had much higher overall 

accuracy than the NWI for the area, which was 86.5% with an error of omission of 54%.  

The model trained on the Puyallup watershed could be extrapolated to the Mashel watershed 

without much decrease in accuracy (96% OA v. 97% OA). However, the Puyallup model did not 

perform as well for the two other study areas. The Mashel watershed is neighboring the 

Puyallup watershed and has similar topographic and wetland characteristics, while the Hoh and 

Coulter Creek study area are very different than the Puyallup watershed.  

 

 

Gini Importance / Mean Decrease in Impurity (MDI) 

Figure 8. Results from the WIP tool random forest model. One output of a random 
forest model is the Gini coeffeicient which is a measure of how each variable 
contributes to the homogeneity of the nodes and leaves in the resulting random 
forest. The variables at the top of the chart contributed the most definition in the 
random forest model and are considered to be of higher model importance. 
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Figure 9. The model trained on the Puyallup data performed well when extrapolated to the Mashel 

watershed (a.). The model only slightly improved when data from the Mashel was used to create a 

new random forest model for the Mashel (b.)  
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While the preliminary model did not perform as well for the two other study areas it was useful 

at identifying wetlands missed in the NWI and was helpful for sample point stratification. The 

preliminary random forest model results improved when we refined our models for the Coulter 

Creek and Hoh watershed study areas using the sample data specific to each study area (Figure 

10 & 11). The raster probabilities moved toward greater certainty of being a wetland or an 

upland. 

 

Figure 10. The model provided greater certainty when trained on the sample data collected in Coulter 

Creek. The left image shows results created by extrapolating the Puyallup model; the right image shows 

refined model results created from the sample training data specific to the study area. 
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Figure 11. Model results improved and moved to greater certainty when the random forest model 

was trained on the sample data collected in the Hoh study area. The top image shows model results 

created by extrapolating the Puyallup model to Hoh study area. The image on the bottom shows 

refined model results created from the sample training data collected specific to the Hoh study area. 
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Toolboxes for ArcGIS Pro 
For this project, we have developed two 

toolboxes for ArcGIS Pro: DEMutilities and 

Wetland Tools. Currently, the DEMutilities 

toolbox contains one script tool: Surface Metrics. 

The dialog box for this script is shown in Figure 

12. This dialog box provides an interface familiar 

to ArcGIS users. Descriptions of each item in the 

dialog box are provided in the metadata for the 

tool, which are displayed in ArcGIS when the 

toolbox is opened. 

The Wetland Tools toolbox contains two scripts: 

Build Random Forest and Run Random Forest. 

The Build Random Forest script is used with a set 

of classified (wetland or upland) points to train a 

random forest model. The Run Random Forest 

model is used to apply an existing model (built 

with the build Random Forest script) to other 

locations and/or with other classified point data 

sets. The dialog boxes are shown in Figure 13. 

 

Figure 12. Example of ArcGIS toolbox for 
creating terrain-attribute raster files. 

 

Figure 13. ArcGIS Pro dialog boxes in the Wetland Tools 
toolbox for building and running random forest models. 
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Discussion 

Model interpretation 
Each tree in the random forest model built with the Build Random Forest script has divided the 

values found in the input rasters into a large set of domains within which the input training data 

points are primarily of a single class (Wetland or Upland). The degree to which these domains 

isolate each class depends on the degree to which the information contained in the rasters 

delineates spatial controls on wetland occurrence. When we apply a random forest model to 

predict wetland class (Wetland or Upland) for each cell in a DEM, the model takes the value for 

that cell from each of the input rasters and runs it through each tree; that is, it determines if 

that point falls in a domain classified as Wetland or Upland. The random forest contains many 

trees (typically hundreds to thousands, the script currently uses 200) and each tree provides a 

“vote” – a predicted class – for each DEM cell. The proportion of wetland votes for a cell is 

interpreted as the predicted probability that the cell is a wetland. Upon completion of our 

model run  we selected a probability equal to or greater than 50% to classify each cell as a 

wetland to build the accuracy assessments presented in this document. However, a user can 

select a higher or lower probability depending on if they want to reduce errors of omission or 

errors of commission. For example, if a user is concerned with overmapping wetlands 

(commission errors) they can select a higher cutoff such as 80%. One of the outputs of the 

random forest model is a curve that shows how accuracy changes depending on the cutoff used 

and can be helpful to select a cutoff to balance these errors and optimize overall accuracy. 

Certainly, a user does not need to select any cutoff and can use the probability output as a 

screening tool to identify areas of high, medium, and low probability of being a wetland. 

The predicted probability and resulting classification depend on how well the information 

provided by the input rasters identifies physical controls on wetland occurrence. We can gauge 

model performance by how well it predicts the class of the training data (using the out-of-bag 

error estimate and confusion matrix obtained when the model was built) and by seeing how 

well the model can predict the class of other classified point locations (using the Run Random 

Forest script).  

The Build Random Forest tool can be used to examine model performance for different sets of 

input rasters. The Surface Metrics tool can be used to build rasters for terrain attributes 

characterized over different length scales. Together, these tools can be used to identify the 

combination of terrain attributes and length scales that best identify wetland class for training 

and test data sets. The model output also includes a table showing the relative importance of 

each raster in determining wetland class. 

The importance of training data 
The ability of a random forest model to predict wetland occurrence primarily depends on how 

well the data used to train the model represent the range of wetland types and locations that 

exist on the ground.  Any biases or errors of omission in the training data will produce results 

with the same bias and error. If the training data does not include some wetland type, slope 
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seeps for example, then the resulting model will not provide any indication of the probability of 

encountering that wetland type. Deriving a probabilistic un-biased sample to create a training 

dataset when you don't know where all of the wetlands are to begin with presents an 

interesting challenge. Additionally, wetlands are considered rare features on the landscape and 

a purely random sample would result in a training dataset that had too few wetlands sample 

points to build a good model. However, there is evidence in the scientific literature that 

correcting for this by oversampling wetlands on the landscape creates imbalanced results that 

over-predict wetlands (Halabisky 2017).  

For this project we tested out two approaches to create a balanced training dataset despite not 

having a complete map of wetland locations. For our Puyallup model we used a GRTS sample 

design developed by the EPA to stratify our sample points using land cover and slope. The idea 

was that increasing our sample size in areas of low slope would increase our chance of sampling 

in a wetland. However, the GRTS sample design is complex and may be difficult for many users 

to implement. For the Hoh and Coulter Creek study areas we ran a preliminary model trained 

on the National Wetland Inventory and then we stratified our sample using the preliminary 

model output. The sampling methods for the Hoh and Coulter Creek was easier to implement 

and provided a good distribution of wetland and upland samples.  

In order to balance the need for adequate samples that fall in wetlands without skewing the 

sample too much towards wetlands, we recommend aiming for a sample that has between 

one-third to one-half of the points falling in wetlands and the remaining points falling in upland.  

This project did not focus on trying to assure a balanced sample of wetland types (e.g. Cowardin 

class) because of the complexity of doing that without a priori knowledge of the location and 

distribution of wetland classes.  

Extension of model to new locations 
As noted above, the ability of a random forest model to predict wetland occurrence depends on 

how well the data used to train the model represent the range of wetlands types and locations 

that exist on the ground. A model trained on one study area, but run on a different study area, 

will produce accurate results if the two study areas are similar. A key point is that not only will 

model values from the variables themselves vary for different study areas, but often the 

variables themselves will vary in importance as well. For instance, in one watershed that 

contains many surface-water driven wetlands, the topographic wetness index may be the most 

important variable that describes the variability between wetlands and uplands, but in another 

study area the slope may be ranked as a more important variable.  

 

Model availability 
The Fortran programs used to build the raster data sets are licensed under the Gnu Public 

License16, version 3. The python and R scripts for the DEMutilities and Wetland Tool ArcGIS Pro 

 
16 https://www.gnu.org/licenses/gpl-3.0.en.html 

https://www.gnu.org/licenses/gpl-3.0.en.html
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toolboxes are posted to a public github repository at 

https://github.com/DanMillerM2/ForestedWetlands. TerrainWorks maintains all software 

developed during collaborative projects. Bug reports, comments, and feature requests for these 

toolboxes can be submitted at http://www.terrainworks.com/contact-us. 

Future 
We have designed the tools for this project expecting that they will evolve over time. The 

scripts and software are licensed as open source and publicly available via github. The random 

forest model can readily accommodate new terrain attributes as explanatory variables and the 

scripts in the Wetland Tools toolbox can accommodate any input grid that can be imported to 

ArcGIS. We have started with a simple set of terrain attributes in the Surface Metrics script and 

expect that users will experiment with other input data types, such as soil depth and 

conductivity that can be extracted from SSURGO17 and STATSGO data. Over time, we hope to 

add additional raster outputs to the DEMutilities toolbox, including the topographic wetness 

index (Beven and Kirkby, 1979), depth-to-water18, and topographic position (Weiss, 2001). We 

also expect that additional functionality will be added to the scripts in the Wetland Tools 

toolbox, including options for tuning the random forest model, additional metrics such as cross 

validation for model evaluation, ability to generate a stratified random set of points for model 

validation, and options to calculate the probable wetland area for any specified polygon using 

the probability raster.   

We are conducting further testing and validation of the WIP tool in forested areas in 

Washington State as part of a 2019 NASA Carbon Monitoring Science grant, titled “Teal Carbon: 

A stakeholder driven monitoring of forest wetland carbon”.  Wetland probability outputs from 

these models will be available upon completion through the NASA CMS website19. The study 

areas for these three locations are the Hoh watershed, the Mashel watershed, and the Colville 

National Forest. 

Conclusion 
Forested wetlands have proven challenging to identify using remotely sensed multispectral and 

optical data because the vegetation unique to wetlands can be hidden below forest canopy. We 

have shown that topographic attributes alone, derived from high-resolution lidar DEMs, can be 

used to quantify probability of wetland occurrence with high confidence. Lidar data is already 

widely available across Washington20 and in several years such data should be available for the 

entire state. The methods and GIS-based tools developed with this project enable use of the 

data to map wetland potential and to evaluate and improve resulting wetland-probability maps 

using photo- and field-verified data. We expect that the capabilities of these tools will expand 

 
17 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr12/tr/?cid=nrcs142p2_010596 
18 Rather than the wet-areas algorithm of Murphy et al. (2007), we expect to use the height-above-channel 
algorithm described in this blog post: http://netmapchallenges.blogspot.com/ 
19 https://carbon.nasa.gov/cgi-bin/available_archived_products.pl 
20 http://lidarportal.dnr.wa.gov/ 

https://github.com/DanMillerM2/ForestedWetlands
http://www.terrainworks.com/contact-us
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr12/tr/?cid=nrcs142p2_010596
http://netmapchallenges.blogspot.com/
http://lidarportal.dnr.wa.gov/
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over time as users determine the most effective topographic attributes for identifying wetlands 

and identify other applications for the resulting models. 
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